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4.6.1  Adjoint of a matrix

Definition 3 The adjoint of a square matrix A = [a
ij
]

n × n
 is defined as the transpose of

the matrix [A
ij
]

n × n
, where A

ij
 is the cofactor of the element a

ij
. Adjoint of the matrix A

is denoted by adj A.

Let

11 12 13

21 22 23

31 32 33

A =

a a a

a a a

a a a

 
 
 
  

Then

11 12 13

21 22 23

31 32 33

A A A

A =Transposeof A A A

A A A

adj

 
 
 
  

11 21 31

12 22 32

13 23 33

A A A

= A A A

A A A

 
 
 
  

Example 23 
2 3

Find  A for A =
1 4

adj
 
 
 

Solution We have  A
11

 = 4, A
12

 = –1, A
21

 = –3, A
22

 = 2

Hence adj A =
11 21

12 22

A A 4 –3
 =

A A –1 2

   
   

  
Remark For a square matrix of order 2, given by

A =
11 12

21 22

a a

a a

 
 
 

The adj A can also be obtained by interchanging a
11

 and a
22

 and by changing signs

of a
12

 and a
21

, i.e.,

We state the following theorem without proof.

Theorem 1 If A be any given square matrix of order n, then

A(adj A) = (adj A) A = A I ,

where I is the identity matrix of order n
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Verification

Let A = 

11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

 
 
 
  

,  then adj  A = 

11 21 31

12 22 32

13 23 33

A A A

A A A

A A A

 
 
 
  

Since sum of product of elements of a row (or a column) with corresponding

cofactors is equal to |A | and otherwise zero, we have

A (adj A) = 

A 0 0

0 A 0

0 0 A

 
 
 
  

 = A  

1 0 0

0 1 0

0 0 1

 
 
 
  

 = A  I

Similarly, we can show  (adj A) A = A  I

Hence A (adj A) = (adj A) A = A  I

Definition 4 A square matrix A is said to be singular if A  = 0.

For example, the determinant of matrix A = 
1 2

4 8









  is zero

Hence A is a singular matrix.

Definition 5 A square matrix A is said to be non-singular if A  ≠ 0

Let A = 
1 2

3 4

 
 
 

. Then A = 
1 2

3 4
 = 4 – 6 = – 2 ≠ 0.

Hence A is a nonsingular matrix

We state the following theorems without proof.

Theorem 2 If A and B are nonsingular matrices of the same order, then AB and BA

are also nonsingular matrices of the same order.

Theorem 3 The determinant of the product of matrices is equal to product of their

respective determinants, that is, AB  = A B , where A and B are square matrices of

the same order

Remark We know that (adj A) A = A  I = 

A

A

A

A

0 0

0 0

0 0

0

















≠,
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Writing determinants of matrices on both sides, we have

( A) Aadj  =

A 0 0

0 A 0

0 0 A

i.e. |(adj A)| |A| =
3

1 0 0

A 0 1 0

0 0 1

(Why?)

i.e. |(adj A)| |A| = |A |3 (1)

i.e. |(adj A)| = | A |2

In general, if A is a square matrix of order n, then |adj (A) | = |A |n – 1.

Theorem 4 A square matrix A is invertible if and only if A is nonsingular matrix.

Proof Let A be invertible matrix of order n and I be the identity matrix of order n.

Then, there exists a square matrix B of order n such that AB = BA = I

Now AB = I.  So AB  = I     or   A  B  = 1    (since I 1, AB A B )= =

This gives A ≠ 0. Hence A is nonsingular.

Conversely, let A be nonsingular. Then A  ≠ 0

Now A (adj A) = (adj A) A = A I (Theorem 1)

or A 
1 1

A A A I
| A | | A |

adj adj
   

= =   
   

or AB = BA = I, where B = 
1

A
| A |

adj

Thus A is invertible and A–1 = 
1

A
| A |

adj

Example 24 If A = 

1 3 3

1 4 3

1 3 4

















, then verify that A adj A = |A | I. Also find A–1.

Solution We have A  = 1 (16 – 9) –3 (4 – 3) + 3 (3 – 4) = 1 ≠ 0
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